
 

RTO-EN-AVT-207 10 - 1 

 

 

High Cyclic Fatigue 

J. SZWEDOWICZ 
Switzerland 

1.0 INTRODUCTION 

A thermal or/and structural cyclic loading, which acts on one mechanical component, can lead towards 
mechanical failure of the whole machine. By a start-up and a shut-down of the turbine (see Figure 10-1), its 
mechanical parts are subjected to loadings, which undergo a continuous change from zero to the nominal 
value and again to zero, like a rotational speed which varies between standstill and its nominal velocity, as 
well as temperature and pressure that alter between the ambient (or below zero) and their elevated magnitudes 
corresponding to the designed service condition. These loadings have static nature and are characterised by 
the mean stress σm (see Figure 10-1c), which can induce locally plastic deformations within the region of the 
stress concentration caused by different geometrical notches of the designed component. These cyclic static 
(mean) stresses above the yield limit of the material lead towards the low cyclic fatigue (LCF) determined by 
the number of start-ups and shut-downs. After the crack initiation, a remaining life of the cracked part is 
determined by using the method predicting the crack propagation in the material.  

Under the nominal service condition the rotating blade is stimulated to vibration by partial arc admissions, 
non-symmetrical circumferential flow distribution, nozzle impulses caused by the stator vanes or flow 
pulsation caused by a random combustion process or an acoustic resonance. Usually the blade is excited by 
non-uniform circumferential distribution of the flow pressure in the turbine or compressor channel. By 
entering into and moving out of zones of different pressure, the rotating blade is excited to periodical 
vibration. This type of the excitation is called as a rotational harmonic excitation (engine order). Even for the 
blade designed to be free of resonance under the base load, during every start-up and shut-down, the blade has 
to pass the engine orders, which can be determined in the Campbell diagram. Figure 10-1a shows the blade 
vibration caused by an excitation, whereby Figure 10-1b illustrated the superposition of two resonances of the 
blade, whose possible resonance mode shapes are given in Figure 10-1d. This type of cyclic loadings causes 
high cyclic fatigue (HCF). If the blade is not resonance proof in its design process, a HCF fatigue life of 107 
cycles can be reached in minutes or hours in one LCF cyclic as it is presented in Figure 10-1. In praxis, the 
entire HCF consists the life up to the crack initiation because the initiated crack propagates usually very fast in 
the material in relation to the crack behaviour for the LCF.  



High Cyclic Fatigue 

10 - 2 RTO-EN-AVT-207 

 

 

 

 

 
Figure 10-1: Operation schedule including start-ups and shut-downs of the turbine as its LCF 

loading with indicated vibrations under the service condition as HCF loading, where: 
a) vibrations due to one resonance excitation 

b) vibrations as a superposition of two resonance excitations 

c) stochastic vibration 

d) mean centrifugal stresses in the steam turbine blade (Szwedowicz et al, 2006) and  

e) its 3 lowest mode shapes excitable for engine orders k of 6, 11 and 12 

A major goal in the development process of rotating turbomachinery turbine blades is to prevent them from 
high cyclic fatigue (HCF) failures, especially for the blades operating with variable rotational speed. To avoid 
failures of airfoils due to either flutter or resonance, freestanding blades often are connected circumferentially 
by different types of coupling elements. Vibrations of long blades with integrally machined shrouds or 
winglets (snubber, midspan shroud) can be reduced by 2 - 3 times with respect to the resonance response of 
the freestanding airfoil. In Figure 10-2 it is illustrated that resonance amplitudes of mode shape f1 for the 0-th 
nodal diameter, which refers to the steady-state response of the freestanding blade, is reduced by the shroud 
coupling to amplitude A for nodal diameters above 8, for which the blades are effectively coupled by  
the shroud. 
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Figure 10-2: Effect of the shroud coupling on the response reduction of the turbine blade. 

In the design process, the reliable prediction of the resonance blade conditions and its dynamic stresses is 
difficult engineering task due to uncertainties with the assessment of damping magnitudes and excitation 
forces acting on vibrating blades. Within a HCF design, the maximal dynamic blade stresses are usually 
obtained from the correlation between the numerical modal (free vibration) results and dynamic strain 
measurements. These vibratory strains are transferred from the gauges either by slip rings or telemetry during 
engine tests with the blade prototype. In the late 90s, the Tip Timing technique becomes a very popular 
experimental approach, which allows measuring of the tip oscillations of all rotating freestanding blades in the 
turbine or compressor stage. This measurement delivers engineers valuable data about the individual dynamic 
behavior of each airfoil, which differs due to mistuning effects. In reality the bladed disc is a system of N 
blades, whose geometry slightly differs from each other due to manufacturing tolerances, resulting in the 
mistuning effect. In the design process, the blade mistuning is not a deterministic quantity. In spite of the 
progress in computational and experimental mechanics, the HCF is one of dominant reason of mechanical 
failures in rotating blades, as it is illustrated in Figure 10-3 for jet engines. 

 

Figure 10-3: Mode statistics in jet engine with respect to the  
type of failure and engine component (Cowles, 1996). 

In this work, state of the art in HCF analysis for rotating turbine blades is presented in details regarding also 
mistuning effects of airfoils. The Stress-Life method, which was developed by Woehler as the endurance 
limits in the S-N diagram, is discussed in relation to Goodman’s, Soderberg’s, Morrow’s, Gerber’s and 
Bagaci’s equations. The strength derating factors for defining the design curve are explained concerning also 
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the safety factor. Also the Strain-Life method contributing effects of the mean stress is described in this report. 
The Smith-Watson-Toper damage parameter with explanation of the local strain and stress concepts are 
discussed here. Essential information about the linear Palmgren-Miner, Corten-Dolan or Haibach concepts 
and non-linear Macro and Starkey, Shanley, or Henry hypotheses for the prediction of the cumulative damage 
are reminded briefly. Because the damage assessment depends on a characteristic of the alternating loading, 
which is based on the cyclic counting, the most popular Miner’s and the rain-flow approaches will be 
compared to each other regarding their disadvantages and benefits. Finally the evaluation of stochastic 
vibrations, determined as a narrow and a broad band process, is analyzed considering engineering needs for 
the design process. 

2.0 STEADY-STATE DYNAMICS OF ROTATING BLADES 

External excitations acting on the rotating blades induce two traveling waves propagating circumferentially in 
opposite directions within the bladed disc. The superposition of these waves generates a harmonic disc 
vibration defined by its natural period, which depends on the system mass and stiffness. In reality the bladed 
disc is a system of N blades, whose geometry slightly differs from each other due to manufacturing tolerances, 
resulting in mistuning effects. In the design process, the blade mistuning is not a deterministic quantity. 
Therefore, in practice, the tuned system of the coupled blades is usually taken into account for the numerical 
assessment of the static and dynamic behavior of the blade under design. The tuned bladed disc vibration is 
represented efficiently using a single blade with complex boundary conditions (Thomas, 1974) as it is shown 
in Figure 10-4. 
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Figure 10-4: Details of modeling of frictional contact constraints between the shrouds within  
one cyclic FE model representing the gas turbine disc assembly (Szwedowicz et al., 2005). 
a) Contact conditions with clearance between the shrouds at standstill 

b) A cyclic FE model with separated the frictional contact constraints from the cyclic  
boundary condition 

c) The gas turbine shrouded disc assembly with N blades 
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For rotational speed Ω and given temperature distribution T, the well-known static matrix equation of the 
rotating turbine blade is expressed with the cyclic FE model (Figure 10-4b) by (Szwedowicz, 1999) 

(1) ( )[ ]{ } { } ( ){ } { }ocA PFFqC,,q,T,K ++= ΩσΩ μ  , 

where FA, F(Ω)c and Po denote the pre-assembly force, the centrifugal load and flow pressure acting on the 
blade, respectively. For the identical deformations on the circumferential sides of the rotor and shroud (Figure 
10-4) and by including centrifugal stiffening effects, the stiffness matrix [K] depends on temperature T, 
rotational speed Ω, airfoil deformation q as well as friction shear coupling forces Cμ. By increasing the 
rotational speed, blades untwist themselves and are simultaneously coupled on their frictional interfaces on the 
shroud. Therefore, contact surfaces at the blade root and shroud, where frictional sliding can occur for the 
acting centrifugal load, should be modeled within the cyclic FE sector as it is illustrated in Figure 10-4. Then, 
the cyclic boundary conditions are separated from the contact constraints, what allows for more reliable 
numerical results. After exceeding a particular rotational speed Ωt, frictional contact forces join together all 
individual blades among each other in one integral disc assembly (Appendix 1). 

At the rotational speed of interest by considering the sticking contact conditions on the blade interfaces and 
neglecting viscous damping, forced vibrations of the bladed disc excited by non-uniform pressure distribution 
P(α) along the circumferential direction α is represented for the n-th nodal diameter by 
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In Eq. (2), the nodes in vector {z}(ℓ), which are located on the ℓ-th circumferential side of the cyclic FE model, 
represent the boundary deformations between the ℓ-th and (ℓ+1)-th disc sectors with the cyclic constraint 
equations as 

(3) 
( ) ( ) N/n2j

boltbolt ezz
1 πll

=
+

 , ( ) ( ) N/n2j
rotorrotor ezz

1 πll

=
+  , 

where the nodal diameter number n equals {0, 1, 2, …, N*/2} whereby N*=N-1 or N*=N for the odd or even 
number N of the blades in the stage, respectively. For each n-th nodal diameter, the global mass [M] and 
stiffness [K] matrices are arranged individually with respect to the generalized vector {φn}={{zn},{qn}}T of 
vibrations around the centrifugally deformed blade. For the considered steady-state dynamics, firstly the free 
vibrations need to be computed by neglecting the pressure {P(α)} and substituting harmonic responses 
{φi,n}exp(jωi,nt) in Eq.(2) from 

(4) [ ] [ ]( ){ } 0)n(M)C,n,(K n,i
2
n,i =−∞= φωΩ μ , 

where each eigenform i of the nodal diameter n (besides n=0 and n=N/2) is determined with 2 identical 
natural frequencies ωi,n with their 2 mode shapes {φi,n}c and {φi,n}s of the disc assembly which are orthogonal to 
each other (see Figure 10-5). For sticking contact conditions (see Cμ=∞ equation (4)) imposed on those nodes, 
that are found in sticking contact conditions in the static results, equation (4) can be solved linearly. 
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Figure 10-5: Vibrations of the blades coupled by the lacing wire and the rotor  
with illustrated the real and imaginary mode shapes of von Mises stresses. 

By repeating this FE analysis for different rotational speeds, the Campbell diagram can be generated for the 
identification of resonances with engine orders k = 1, 2, 3, …, ∞. In Figure 10-6, the computed and measured 
Campbell diagrams are presented for the last stage of steam turbine blades coupled by frictional bolts (Figure 
10-6c). Then, the most critical resonance can be identified numerically, especially for these turbines that 
operate with the variable speed. This allows for a straightforward measurement, which requires the suitable 
instrumentation of the blade with strain gauges (Szwedwicz et al., 2002 and 2008a). 
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Figure 10-6: The computed (solid lines) and measured (rot and blue colors denote the maximum and 
minimum strain amplitudes, respectively) Campbell diagrams of the last stage of the steam bladed 

disc coupled by frictional bolts operating with variable speed (Szwedowicz et al., 2008a). 

For the excitation amplitudes {Fk} and two FE eigenfrequencies ωi,n with their mass-normalized eigenforms 
{Φ°}i,n = {φ°i,n}c + j{φ°i,n}s, the forced response analysis of the coupled blade is performed in the modal 
domain for each nodal diameter n separately. Then, Eq. (2) is redefined with the modal steady-state response 
equation for resonance ωi,n and the modal damping ratio ξi,n by (Filsinger et al., 2002) 

(5) tjk
n,in,in,in,in,in,in,in,i efuku2um Ωξω =++ &&& , 

where ui,n is the modal displacement and 

(6) { } { }αΦ ,k
T*
n,in,i Ff °=       - modal force, 

(7) { } ( )[ ]{ } 0.1nMm n,i
T*
n,in,i == °° ΦΦ     - modal mass-normalized mass and 
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(8) { } ( )[ ]{ } 2
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°    - modal stiffness 

of the cyclic FE blade model and { } T*
n,i

°Φ  is the conjugate transposed vector. Finally the steady-state response 

of all nodes representing the blade vibration of the n-th nodal diameter is calculated in the Cartesian system in 
the time domain from 
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where the phase delay of the response for the disc mode i vibrating with the n-th nodal diameter is given by 
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For nodal diameter n of interest, vibrations of different disc mode shapes i.n = {1.n, 2.n, 3.n, …, I.n} can 
influence the total response of the vibrating blade. Generally it means, that the blade could be excited 
simultaneously by  

• a partial arc admission effect due to the inlet or outlet geometry of the turbine casing (Figure 10-7a),  

• manufacturing irregularities or ovalization of the casing owing to its thermal expansion (Figure 10-7c), 

• nozzle impulses from stator vanes (vane passing excitation) shown in Figure 10-7b, 

• acoustic pulsation for instance in the combustor chamber, 

• stochastic excitations caused by turbulent flow.  

Influence of damping  

Influence of excitability  

Influence of excitation 

Resonance condition (Influence of eigenfrequency) 
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Figure 10-7: Usual sources of excitation for rotating bladed discs. 
a) Inlet partial arc admission  
b) Nozzle effects of stator vanes (Dzygadlo et al., 1982) 
c) Ovalization of the casing owing to its thermal expansion (Dzygadlo et al., 1982) 
d) FE acoustic mode shape in annular combustor 

In praxis, the blade is stimulated mainly by one excitation source. However at one particular rotational speed 
the blade can be excited by two or even more harmonic excitations. In addition the rotating blade might be 
stimulated by acoustic resonance (see ε in Figure 10-8) induced for instance in a combustor cavity.  
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Figure 10-8: a) Possible excitations induced by flow b) Campbell diagram of the freestanding blade 

with 2 lowest eigenfrequencies ω1 and ω2 excited by the rotational and acoustical (e.g. Eisinger  
and Sullivan, 2002) harmonic excitations, where ε and Ω denote the acoustic resonance  

and the rotational turbine speed, whereby red and green colors correspond to 
the rotational and acoustical harmonic engine orders, respectively. 

As it is given in Equation (9), the reliable determination of the dynamic response of the rotating bladed disc 
depends mainly on four phenomena, such as: 

1) the eigenfrequency assessment, 

2) the damping assessment, 

3) the excitation assessment and  

4) the excitability assessment.  

The presented here computational process (see Figure 10-10) delivers the reliable numerical eigenfrequencies 
which are in very good agreement with the measured resonance frequencies, as it is illustrated in Appendix 1. 
For both cases of the pre-assembled contact and the contact with clearance of the shrouded blades as well as 
for the blades coupled by frictional bolts (Fig. 10-4), the computed eigenfrequencies match very well to the 
experimental resonance frequencies. 

The damping of the rotating blades depends essentially from aero- and frictional dissipation, because the 
material damping is negligible small. The damping value must be evaluated from the measured resonance 
response functions as it is illustrated in Figure 10-9. The characteristic range of the damping ratios need to be 
determined from more measured resonances. Then, the minimum and maximum damping values can be used 
to calculate the dynamic stress range of the vibrating blades.  

rotational speed of the blade Ω

ω2

ω1 1Ω
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Figure 10-9: a) The experimental Campbell diagram of the shrouded bladed disc (Figure 10-2) with 
shown evaluation of the modal damping ratio from the measured resonance response function  

of eigenfrequency i.n excited by the engine order k=n (Szwedowicz et al., 2008c) b) FE  
results of the resonance strain εA of the analyzed resonance response function. 

The excitation assessment relates to the determination of the excitation spectrum, which usually is obtained 
from flow measurement of the circumferential pressure distribution {P(α)}. For this measurement the 3- or  
5-holes probes are applied, which traverse the turbine channel between the stator and blade stages in the radial 
direction r. This measurements are repeated for different circumferential position α, so that the experimental 
pressure distribution P(α,r) can be defined for the operation condition of interest.  

Recently unsteady CFD computations are used more frequently in the design process (see point 4 in Figure 
10-10). Especially 2D unsteady CFD simulations, performed on one and more axial-circumferential plane of 
the turbine channel, can predict the variation of the pressure on the contour blade in the time domain. This 
process is illustrated in Figure 10-11, where the CFD pressure signals in time are decomposited into the real 
and imaginary excitation forces acting on nodes of the blade contour. In the mathematical description, the 
experimentally or numerically known pressure distribution {P(α)} is decomposed harmonically by complex 
Fourier transformation for K equidistant points describing the circumferential pressure distribution from 0° up 
to 360° by 

(12) ( )∑
−

=

−=
1K

0r

krj
rk K

2
ePF

π
α  ,  k = 0, 1, …, K,  

where Fk = Fk, c+jFk, s is the complex Fourier coefficient (excitation amplitude) of the k-th engine order. At the 
particular circumferential angle αδ of the excited node δ on the blade contour, the excitation amplitude is  
given by  

(13) Fk,α = Fk, c cos(kαδ) + jFk, s sin(kαδ)   ,   where   k = 0, 1, 2, …, ∞. 

a) 
b) 

aa

time
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2) Computation of the natural frequencies of 
the blade with sticking constraints conditions 
on the contact area found in the static FEA

3) Assessment of blade resonances in the 
Campbell or the nodal diameter diagram

Modification of the blade 
coupling (e.g. shroud) for 
avoiding resonance risk

4) CFD time simulation of the 
coupled stator-rotor flow field 
within turbine stages

5) Resonance FE analysis 
for the computed excitation 
and blade eigenfrequencies

1) Non-linear static FE calculation for finding the effective 
contact on the blade interfaces (e.g. on the shroud)

 

Figure 10-10: Computational process for the HCF design of the rotating disc assembly. 

a) unsteady CFD b) data extrapolation  c) FFT analysis d) FE forced response
 
 
 

             
 
 

Real excitation 
amplitudes Fc 

Imaginary excitation 
amplitudes Fs  

Figure 10-11: Demonstration of the 2D FSI (Fluid-Structure 
 Interaction) computation (Schmitz et al., 2006). 

a) Unsteady CFD simulation, where Ω denotes the rotational speed of the turbine, 

b) Extrapolation of CFD grid (yellow points) on the FE mesh (green color),  

c) Fourier decomposition of the CFD pressure P(t) into the real Fc and imaginary Fs excitation 
forces acting on contour nodes of the FE mesh for the engine order k of interest, 

d) Computed FE resonance von Mises stresses of the torsion mode shape 
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Finally, for the known damping ratio, the dynamic stresses of the vibrating blade can found with satisfied 
agreement to the measured strains at the strain gauges. 

Indeed, the numerical CFD prediction of the excitation forces is very time consuming process and cannot be 
applied too frequently in the conventional design process to assess excitation spectrums for different loading 
conditions. In this case, the scaling of the computed unsteady pressures allows for rapid forced response 
computations as it is shown for a wide operating range of the Rolls-Royce turbine blades by Green and 
Fransson (2006). They found the error induced by pressure scaling of the order of 6%, which is acceptable for 
designers. Since the excitation pressure are known, then the excitability assessment of the vibrating blades in 
Equation (9) can be determined reliably.  

However, the final numerical prediction of the resonance stresses depends significantly on the reliable 
excitation forces as well as the trustworthy damping values, which are often unknown parameters in the 
design process. Therefore, the HCF design of the blades operating with variable speed is based principally on 
the determination of the allowable amplitude of alternating stresses with respect to the computed FE mean 
stresses (Fig. 10-1). In case of the turbine operating with the constant nominal speed, the rotating blades are 
design to be free of resonance up to an engine order of 6, as it is given in Figure 10-12 for two freestanding 
gas and steam turbine blades. Concerning considerable uncertainties in the damping assessment as well as 
remarkable computational efforts in simulations of the forced vibration analysis, measurements of the blade 
vibration still become essential element of the engineering prevention of bladed discs against HCF.  

 

              

Figure 10-12: Design criterion of resonance free at the constant nominal speed. 
a) The experimental Campbell diagram of the gas turbine blade in the spin pit condition 

where also the lowest 2 mode shapes of the blade are shown 

b) The numerical Campbell diagram of the steam turbine blade under the operation condition 
(Richter, 2003) 

a) b) 

Nominal rotor speed 
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3.0 EXPERIMENTAL DYNAMICS OF ROTATING BLADES 

In the experimental design process, the maximal dynamic blade stresses are usually obtained from the 
correlation between the numerical modal (free vibration) results and dynamic strain measurements. For this 
purpose, by using the FE free vibration results for the mode shape i.n of interest, the relation of the 1D strain 
amplitude εgauge,i.n,FE along the gauge orientation at its middle position to the maximum von Mises σmax,i.n,FE (or 
another equivalent stress) is calculated from  

(14) 
FE,n.i,gauge

FE,n.imax,
n.i,gaugeV

ε
σ

=  , 

where Vgauge,i.n is the transition factor for the strain gauge measurement of resonance i.n of the bladed disc. 
This process is displayed in Figure 10-13a, where the transition factor of eigenfrequency ωi,n is calculated for 
the measured strain εgauge,i.n,2 at strain gauge 2 and maximum FE equivalent stress σeq,max,i.n. The equivalent 
stress, like von Mises stresses depends on 6 real and imaginary stress components of σxx, σyy, σzz, σxy, σxz and 
σyz, which vary in time as it is illustrated in Figure 10-15a with 6 rotating vectors around node Nj in the 
complex domain. The simplest way to assess the maximum equivalent stress in the vibrating disc assembly is 
to visualize the free vibration output with a post-processing tool, which can extrude circumferentially the 
numerical results of one FE sector. For nodal diameter n of interest, a visualization of 180°/n of the bladed 
disc is enough for finding the maximum equivalent stress in disc vibration i.n. Indeed, the typical cyclic FE 
model contains a lot of nodes, what assures the reliability of the computed data. Thus, the post-processing of 
the lowest mode shape of a disc assembly with many blades (e.g. N=80 and more) might induce numerical 
difficulties because of the graphical performance of the used computer.  
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Figure 10-13: The vectorial illustration of 6 stress components “rotating” on the complex  
reference systems with the constant speed of eigenfrequency ωi.n at node Nj and Nk  

at which the maximum resonance von Mises stresses σmax,i,n occur, 
a) Resonance von Mises stresses of the turbine blade instrumented with 2 strain gauges,  

b) Resonance von Mises stresses and the mode shape of the turbine blade with illustration of 
the measuring plane at the airfoil tip for the Tip Timing Measurement, where ωi.n ≡ fi,n., t is the 
natural period of the vibration eigenfrequency ωi.n 

Another alternative for measuring blade vibrations is the tip timing measurement (TTM), which is described 
in details by Kraemer and Plan (1997). This measuring system uses at least two optical or capacity sensors, 
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which are mounted in the turbine casing with circumferential distance αc. The distance αc is related to the 
circumferential vibration wave of the disc eigenfrequency ωi.n of interest. By monitoring the rotational speed 
of the turbine, the TTM measures the vibrations uTTM,i,n of all airfoil tips passing these two sensors. For this 
measurement, the relation between the FE response amplitude uTTM,i,n and the FE maximum stress von Mises 
σmax,i.n,FE (or another equivalent stress) needs to be calculated by  

(15) 
FE,n.i,TTM

FE,n.imax,
n.i,TTM u

V
σ

=  , 

where VTTM,i.n is the transition factor for the tip timing measurement of resonance i.n of the bladed disc as it is 
shown in Figure 10-14a.  

 

Figure 10-14: a) Laser beams from the optical sensors of the tip timing system and  
the measured blade vibration oscillations (Fuehrer et al., 1993) b) Blades  

instrumented with the strain gauges and the measured vibratory strains in  
Campbell diagram for the spin pit condition (Szwedowicz et al., 2008). 

For the measured response amplitude uexp,i.n (see Figure 10-14a) with the tip timing system, the real maximum 
resonance stress σmax,i.n of the blade is obtained from  

(16) n.iexp,n.i,TTMn.imax, uV=σ  . 

In case of the measured strain amplitude εexp,i.n (see Figure 10-14b), the real maximum resonance stress σmax,i.n 
of the blade resonance ωi,n is determined in the similar form as  

a)  b) 
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(17) n.iexp,n.i,gaugen.imax, V εσ =  . 

These vibratory strains are transferred from the gauges either by slip rings or telemetry during engine tests 
with the blade prototype. Vibrations of the blade can be characterized with an adequate number of strain 
gauges placed on the airfoil contour (see Figure 10-14b). In most papers given in literature, gauge locations 
and orientations are determined by using the numerical mode shapes (Kielb and Abhari, 2001) or from 
experimental stress analysis (e.g. Purcell, 1996). The strain gauge is then instrumented close to the peak stress 
location for the mode of interest. This qualitative technique may lead into data inaccuracy because of 
ambiguous mode identification occurring frequently for shrouded discs, blades assembled on flexible discs or 
high engine orders. The numerical manner for the calculation of the well-located gauges is provided by 
Szwedowicz et al. (2005), who utilized genetic algorithm optimization tool for an effective numerical search 
of suitable solutions of the defined optimization function. The typical goal function is based on 4 principles  

a) sufficient strong signals of strain,  

b) measuring of various mode shapes with a single gauge,  

c) a good location for the instrumentation of gauges and  

d) a good relation of the measured strain magnitude compared to the maximum resonance von Mises 
stress (see Eq. (14)). 

For the FE mode shapes determined in the complex domain, the position and orientation of the gauges are 
determined. Then, the blade is instrumented with them as it is illustrated in Figure 10-14b. In praxis, only few 
blades can be instrumented with the gauges because of the limitation in the measuring equipment. Thus, strain 
gauges cannot be used in measuring of a vibration scatter in vibrations of the mistuned blades, which 
frequently occurs for freestanding blades especially if they are weakly coupled by the rotor. For disc 
assemblies, which are strongly coupled by a shroud, a wire or winglet, the mistuning does not induce the 
localization phenomena but generates double mistuned resonance peaks at two slightly different resonance 
frequencies ω’ and ω” as it can be seen in the measured order tracking in Figure 10-15. 

  

Figure 10-15: a) Variations of the order tracking of the 8th engine order for the 1st resonance 
frequencies of the mistuned disc assembly strongly coupled by bolts for different service  

loadings A, B, C, D and for partial arc admission P, where ω’ and ω” are 2 resonance  
peaks due to mistuning (Szwedowicz et al., 2008b) b) Scatter of the measured  

resonance frequencies of freestanding blades (Bladh, 2005). 

a) b) 
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In general, a vibration response of the mistuned blades is few times bigger than the computed resonance 
amplitudes of the tuned blades. This is because of spatial localization of the vibration energy (Whitehead, 
1988). Certain airfoils, which are disordered by manufacturing and assembling tolerances as well as by 
divergences in material properties, might experience substantially larger oscillations than the numerical 
response amplitudes of the tuned bladed disc. Thus, the mistuned blades having high resonance amplitudes are 
the most critical for the HCF. This can be proved experimentally by using the tip timing system, which 
measures oscillation of each blade in the rotating bladed disc. In evaluation of the results from the tip timing 
measurement a certain difficulty can be with identification of the excited nodal diameter, what is an important 
piece of information in the HCF design. However, the tip timing system with at least 6 sensors provides the 
resonance frequencies and also enough detailed information about the forms of the excited vibration waves 
propagating in the rotating bladed disc. The strain gauge from the telemetry system provides continuous 
signals of the blade vibration, from which the detailed results about the mode shapes of the vibrating disc 
assembly can be evaluated. For both measuring systems, the numerical predication of the blade vibrations 
always is essential for the properly performed experimental dynamics.  

4.0 RESONANCE PROOF OF ROTATING BLADES 

The restricted frequency range of the blade eigenfrequencies below the 6th (see Figure 10-12) or even up to the 
8th engine order is the most important criterion in the design of bladed disc assemblies operating with the 
constant nominal speed. For these blades, resonance loadings occur during start-ups and shot-downs of the 
turbine, when the blade eigenfrequencies are excited by lowest engine orders as it is shown in Figure 10-12.  

Magnitudes of the resonance amplitudes are smaller than that in the steady-state excitation as it can be seen in 
Figure 10-16a. The transient resonance amplitude mainly depends on a value of the acceleration +a or 
deceleration -a of the rotor. The blade passes its resonances with the rotational speed Ω(t) in the time domain t 
as it is expressed by  

(18) Ω(t) = Ω0 + at , 

where Ωo is the initial rotational speed which for instance can be equal to 0 at the standstill or to the nominal 
speed Ωn for the start-up or shut-down of the turbine, respectively. In addition, the resonance amplitudes for 
transient regime are influenced remarkably by the damping magnitudes as it is illustrated in Figure 10-16b. 
This figure shows additionally a characteristic series of envelopes that appear in the transient resonance 
response function, since either the damping magnitude or the passing velocity are enough small.  
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Figure 10-16: a) Resonance Response Function (RRF) for the steady-state and transient excitation b) 
Behavior of the transient responses in terms of modal damping ratios ξ of 0.02% (a), 0.1%  

(b) and 0.2% (c) computed with a single mass-spring system of one degree of freedom  
(SDOF) model of the rotating blade for the excitation amplitude and the  

constant angular speed deceleration a of the rotor. 

Considering the particular difficulties in the reliable assessment of the damping and excitation mechanism in 
the transient vibration, blade stresses are seldom predicted numerically for the transient loading. In most 
cases, the experimental tests are used for the determination of the resonance stresses of the blade in its 
transient vibratory state. Usually, in the start-up or the shut-down of the rotor, the transient stresses in the 
blade are not so much critical as they are for the full loading condition. Simultaneously with decreasing the 
rotational speed, the thermal and centrifugal stresses σm reduce, so that a margin of safety for alternating 
resonance stresses σA increase according to Haigh’s diagram shown in Figure 10-17, which is also called the 
Mean Stress Diagram. Moreover, for low rotational speeds the normal contact stresses induced by the 
centrifugal load decrease and then the frictional dissipation at the blade root increases. This frictional damping 
suppresses the alternating stresses σA.  
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Figure 10-17: a) Haigh’s diagram as the most popular the Mean Stress Diagram in which green color 
means infinite life, whereby Rm ≡ Su is the ultimate tensile strength and σw ≡ σe ≡ Se  

denotes the tensile endurance strength and U is the 1st bending mode shape of  
the resonance frequency ω1, b) Resonance Response Functions for the  

steady-state excitation in terms of damping magnitude D ≡  ξ. 

The most critical problems of the high cyclic fatigue occur for bladed discs operating with variable speed. 
Then, a disc assembly can be in resonance for long operation time. Therefore, these blades have to be 
resonance proof as the essential feature in the HCF design process. The blade can be in resonance, since the 
blade eigenfrequency ωi,n coincides with the excitation frequency, as it is expressed by 

(19) 
⎩
⎨
⎧

±
=

Ωε
Ω

ω
k

k
n,i  , k = 0, 1, 2, 3, …, ∞ , 

where k is the engine order number, kΩ and (ε ± kΩ) denote the rotational and pulsation (acoustical) harmonic 
excitation, respectively. In Equation (19), ε can correspond to the acoustic resonance induced by the turbulent 
flow (see Figure 10-8b).  

Besides the frequency condition given above, the excitability condition for the tuned bladed assembly has to 
be fulfilled. Due to the orthogonality condition between the disc mode φi,n and the circumferential pressure 
distribution Fk (see Equation (13)), the resonance occurs only, if the engine order k satisfies  
following conditions 

(20) k = κ⋅N m n   for the even number N, 

(21) k = κ⋅(N+2) m n   for the odd number N, 

a) b) 
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where κ=0, 1, … ∞ and N denotes the number of blades in the disc assembly. For the most common 
resonance problem of the rotational harmonic excitation kΩ and the lowest engine order k (for instance k<10), 
the Equation (9) can be simplified considering the resonance condition of ωi,n = kΩ and n = k. Then, the 
resonance response of node η is obtained from 

(22) 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= °

2
n,in,i

n,i,o
,n,i,n.i

2

F
q

ωξ
Ψ ηη  , 

where according to Equation (13) the modal force Fo,i,n can be rewritten with 

(23) { } { } { }( ) { } { } ( ){ } { } ( ){ }( )δδ ααΦΦ kcosFjksinFFjFF T
c,k

T
s,k

T*
n,iC,kS,k

T*
n,in,i,o +−=+−= °°   . 

In practice, the 3D excitation pressure of engine order k is usually unknown and the resonance response 
equation (22) needs to be simplified to  

(24) ( ) ( )
2
n,in,i

,o
o

,s,n,i
o

,c,n,iko
,s,n,i

o
,c,n,i2
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j
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q

ωξ

φφ
φφ

ωξ
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ηη
Λ

ηη
+

+== °  , 

where Fo,Λ is the resulting static force of the steady-state flow imposed at point Λ of the airfoil (see Figure 10-
16b). In Equation (24), sk is stimulus of the k-th engine order which is expressed empirically by 

(25) 
o

k
k F

Fs =  , k = 1, 2, 3, …, ∞ , 

where Fo and Fk are the resulting static amplitude and excitation amplitude of the k-th engine order of the 
experimental excitation spectrum. This spectrum can be obtained from the Fourier Fast transformation of the 
measured flow pressure distribution by using for instance a 5-hole probe. In equation (24), the expression 

o
,s,n,i

o
,c,n,i,n,i j ηηη φφΨ +=°   

refers to the FE mass-normalized real and imaginary mode shape of the η–th degree of freedom of node n and 
eignefrequency i. These mode shapes can correspond to displacement, strain or stress in terms of needs in the 
HCF design process. For example, considering the real an imaginary FE mode shape of stress component 
σxx,i,n,c,η and σxx,i,n,s,η, the resonance stress σxx of the mode shape i,n at node η is determined with  

(26) ( ) ( )
2
n,in,i

,o
o

,s,n,i
o

,c,n,iko
,s,n,i,xx

o
,c,n,i,xx,n,i,xx

2

Fjs
j

ωξ

φφ
σσσ ΛΛΛ

ηηη
+

+=  . 

This uni-axial stress can be treated as the maximum resonance stress, if the blade dynamics is defined by the 
1D formulation like Montoya’s or Timoshenko’s theory. For 3-dimensional stress state, equation (26) needs to 
be applied for all 6 components of the stress tensor of point η (see Figure 10-13) and then resonance von 
Mises stress (or another equivalent stress) can be computed.  
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Equation (26) correlates very well to Traupel’s stimulus concept based on the 1D theory (1982). Traupel 
calculated the alternating stress σA (for instance σA=σxx,i,n,η in equation (26)) in relation to the static bending 
stress σm,BN at the blade hub (see σBN in Figure 10-18) induced by the static steam pressure acting on the 
freestanding airfoil. Then, the resonance stress σA is calculated from  

(27) 
ξ

χσσ
2

fs
BN,mA =  , 

where s is the stimulus factor, which can vary from 0.02 up to 0.1 (Traupel, 1982) and ξ is the overall modal 
damping ratio caused by material, friction and aerodynamic viscous dissipations, which has to be obtained 
from the experiment. The parameter f denotes the excitability factor, as it is expressed in equation (24) by fo,δ. 
The parameter χ in equation (27) indicates the coupling factor of the blade, which can be determined for each 
disc mode shape i.n from the coupling degree γ of the blade (Szwedowicz et al., 2008a) as 

(28) ( )[ ] ( ) ( )
,coscos

ba

n,ibn,ia1
n,ib,a

1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
== −−

ΩΩ

ΩωΩω
Ωγχ  

where ω(Ωa)i,n and ω(Ωb)i,n are either experimental or numerical frequencies at the rotational speeds Ωa and Ωb 
(where Ωa > Ωb), respectively. 

 

Figure 10-18: a) The last low pressure steam turbine blades coupled by frictional bolts  
and b) FE static bending stresses, where Λ is position of the excitation force  

at the radius hΛ (Szwedowicz et al., 2008b). 

In both HCF design processes given by equations (24)-(26) and Traupel’s equation (27), the experimental data 
like excitation amplitude and damping are essential parameters for getting the reliable results. In addition, for 
the blades weakly coupled by the disc, also mistuning must be considered in the HCF design process.  

In the typical design process, the static bending pressure is known from the steady-state flow simulation. In 
the worst case, the resulting static force Fo is given for the dynamic analysis. Usually the characteristic 
stimulus s and the modal damping ratio ξ are acquainted with the experimental data of the previous 
investigation of similar blades (see e.g. Figure 10-9a). Then, the resonance stresses and strains can be 



High Cyclic Fatigue 

RTO-EN-AVT-207 10 - 23 

 

 

computed from the FE simulation and the maximum resonance strain εA,gauge,FE at the strain gauge is obtained 
for the assumed stimulus so and modal damping ratio ξo.  

Thus, from the FE steady-state dynamic analysis, the resonance stress amplitude σo is obtained for the 
constant excitation amplitude Fo and the constant damping ratio ξo. With respect to the given minimum ξe,min 
and maximum ξe,max modal damping ratio, this FE stress amplitude σo can be scaled to another resonance 
stress σe relating to the damping ratio ξe. Assuming the constant excitation amplitude Fo, the stress σe is 
calculated with the hyperbolical function given as  

(29) 
e

o
oe ξ

ξσσ =  . 

On the other hand, higher stimulus se than that so used in the FE analysis needs to be considered in the design 
process. Then, assuming the constant damping ratio σo, the resonance stress response σe for stimulus so is 
determined linearly from  

(30) 
o

e
oe s

sσσ =  . 

In Figure 10-19, these variations of the resonance stresses of the tuned blades are summarized in the 
sensitivity diagram of the resonance responses, which is novel diagram in the literature. In this diagram, the 
computed stresses can be compared straightforwardly with the experimental stresses (see equations (16)-(17)) 
at their evaluated damping values, as it is shown for hypothetical experimental data in Figure 10-20.  

 

Figure 10-19: Sensitivity diagram of the resonance response for the tuned and mistuned blades, 
where N is the number of blades in the disc assembly and ξm is the material modal  

damping ratio treated as the minimum damping for the dynamic analysis. 
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Figure 10-20: Example of the application of the sensitivity diagram of resonance responses  
with the hypothetical measured resonance stresses with their evaluated damping  

values, where Min_Mistuning = (1+(N)1/2)/2 and Max_Mistuning = (N)1/2. 

For the safety HCF design it is important to consider the influence of mistuning for prediction of possible 
maximum response amplitudes of mistuned blades. For this purpose, Whitehead’s factor (1988) is used as it is 
defined with 

(31) 
( )

2
N1

min
+

=θ  , 

where N denotes the number of blades in the mistuned disc assembly. Multiplying the resonance stress σe by 
mistuning factor θmin, the amplified stress of a mistuned blade is determined as 

(32) minemin, θσσθ =  . 

According to recent different numerical investigations Han’s et al., (2007), Whitehead’s theoretical 
amplification factor is not conservative. Based on their parametric study of the maximum amplification factor 
as a function of damping in two single degree-of-freedom per blade disk models as well as in a reduced order 
model of a blisk, Han et al. (2007) provide an amplification mistuning factor θmax for the maximum response 
of the mistuned N-bladed disc as 

(33) Nmax =θ  . 

Then, the maximum resonance stress σθ,max in the mistuned disc assembly is obtained from  

(34) maxemax, θσσθ =  . 

Using both equations (32) and (34), the most critical fatigue assessment of the mistuned disc assembly can be 
determined, as it is explained graphically in Figures 10-19 and 10-20. The sensitivity diagram of resonance 

FE result 
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responses for the tuned and mistuned allows for straightforward correlation to the measured stresses. This 
diagram helps for finding the realistic variation of the alternating stresses σA with respect to uncertainties with 
excitation, damping and mistuning for the HCF life prediction.  

5.0 STRESS-LIFE (S-N) METHOD 

The definition of cyclic loading and mean stress is explained in Figures 10-1 and 10-21. Since the computed 
mean σm and alternating stresses σA are within the elastic range, the life prediction is based on the Stress-Life 
method (frequently indicated by “σ-N” or SN acronyms). This method was developed by Wöhler (1860) and 
is based on the experimental endurance limit σe shown in Figure 10-22a. There is demonstrated that the 
endurance stress σe indicates a remarkable scatter in the experimental tests of the normalized specimen, made 
of the same material alloy. Major reasons of these scatter effects can be accounted due to  

• slight differences in polycrystalline structure texture in every specimen,  

• very minor geometrical dissimilarities among the used specimens, 

• uncertainties in the measuring equipments and 

• unrepeatable fixations applied to ends of all measured specimens caused by the elastic behaviour of 
surface roughness on the contact. 

 

minmax σσσΔ −=   - stress range, 

22
minmax

a
σσσΔσ −

==  - stress amplitude, 

2
minmax

m
σσσ +

=   - mean amplitude, 

max

minR
σ
σ

=    - stress ratio. 

Figure 10-21: Definition of the cyclic loading with offset including its mathematical description. 
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Figure 10-22: a) For the constant stress ratio R = σmin/σmax Woehler’s curve with 3 characteristic regions of  
the static strength, finite and infinite life, where σe endurance limit (called also fatigue strength σf or Se)  
at Ne cycles (Dietrich et al. 1995); b) True and engineering stress-strain relationship for American and  

European notations characterising the physical behaviour of the specimen under uni-axial  
loading, in which necking of the specimen begins at engineering strength Rm (or Su)  

The scattered parameters are treated statistically and they are represented by the probabilistic distribution (see 
Figure 10-22a). Their lowest values are used in the design process when the most conservative criterion for 
the life prediction is required. 

In the lifetime assessment proposed by Wöhler, the calculated maximum alternating stress σa was compared 
with the experimental endurance stress σe and the HCF life was estimated. To determine an influence of mean 
stress σm on the fatigue life, Wöhler’s method was developed empirically further by Gerber (1874), Goodman 
(1899), Soderberg (1930) and Morrow (1960), which are expressed by  

(35) 1
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where σy (called also Re, Sy) denotes yield stress (Figure 10-22b), σu (or Rm, Su) is ultimate stress (Figure 10-
22b), σf corresponds to true fracture stress (Figure 10-22b) and σe (or σD, σW, Se) means endurance stress 
shown in Figure 10-22a.  

The equations (35)-(38) predict a region of infinite life by combining the endurance strength σe (Figure 10-
22a) with either the yield strength σy, ultimate strength σu, or true fracture stress σf known from monotonic 
uni-axial tensile test (Figure 10-22b). Therefore, these life equations ought to be applied only to tensile mean 
stresses. It is also characteristic, that for small mean loadings (R<<1) these methods do not differ among each 
too much. According to real data from field failures usually are reported between the Goodman and Gerber 
curves, where Goodman ones should be used for conservative design. If the ultimate strength approaches the 
true fracture stress like it is for hard steels showing brittle behavior, the Morrow and Goodman equations 
provide practically comparable life prediction.  

In present design practice, Haigh’s equation becomes the most popular in engineering analyses. This method 
is developed from Goodman’s equation by considering the description of the Woehler curve for the range of 
finite life in Figure 10-22a as  

(39) ( )bfa Na=σ . 

By applying the number Nf=Ne of fully-reversing cycles (where Ne varies between 105 ÷ 107 cycles what 
depends on the strength and hardness of the alloys) into equation (39), the endurance stress σe is obtained, 
which is substituted into Goodman’s equation (36), Haigh’s equation is determined as 

(40) ( ) ⎟⎟
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⎞
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u
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ea 1Na

σ
σσ  , 

where a and b are empirical constants. In case of the absence of the experimental data, these constants can be 
estimated from 

(41) 
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 , 

where all stresses are expressed in (psi) unit. In addition, experiments show a linear relation between the 
endurance strength σe and ultimate stress σu, which for R=-1 (mean stress σm=0) are given exemplary  
in Table 10-1. 
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Table 10-1: Relation between the endurance strength σe and ultimate  
stress σu, for R=-1 (mean stress σm=0) from Issler et al. (1995). 

σe,R=-1 = (0.40 ÷ 0.45)σu steel under tensile loading mode 
σe,R=-1 = 0.436 Rp0,2 + 77 
  
σe,R=-1 = 0.27 Rm + 85 cast steel under tensile loading mode 
  
σe,R=-1 = 0.27 Rm + 100 modular cast iron under tensile loading mode 
  
σe,R=-1 = 0.27 Rm + 110 anneal cast iron under tensile loading mode 
  
σe,R=-1 = 0.39 Rm grey cast iron under tensile loading mode 
  
σe,R=-1 = (0.25 ÷ 0.35)σu aluminium alloy under tensile loading mode 
  
σe,R=-1,Bending = (1.1 ÷ 1.4)σe,R=-1 ductile alloy under bending loading mode 
  
σe,R=-1,Torsion = 0.58σe,R=-1Bending brittle alloy under torsion loading mode 

To create the Haigh’s diagram according to equation (40) a lot of data must be known from the experimental 
tests of specimen. This is demonstrated in Figure 10-23b, which shows additionally an influence of the mean 
stress σm on the endurance stress σe. The reduction of the endurance stress by increased tensile mean stress is 
less significant for ductile alloys in relation to brittle materials.  
 

 

 

 

 

 

 

Figure 10-23: a) Graphical comparison of the most popular Mean Stress Diagrams; b) Relation 
between Wöhler (Fatigue-Strength-Diagram; FSD) curves and Haigh’s Diagram  

with the indicated influence of the mean stress on the fatigue life.  

In the design process, the simplified Haigh’s diagram is usually created by using two different endurance 
strength σe,R=0 and σe,R=-1 as well as yield stress σy (see Sy=Re in Figure 10-22b) and ultimate stress σu (see 
Rm=Su in Figure 10-22b). For these data, the construction of the Haigh’s diagram is explained in Figure 10-
24a. Also in the engineering practise the Haigh’s diagram is extended by using an additional slope function 
defined with sensitivity factor M. As it is given in Figure 10-24b, the life curve fits in wider range of equation 
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(40). The factor M is defined graphically in term of the ultimate stress σu (Rm=Su) in Figure 10-25 (Issler et al., 
1995).  

 

 

 

 

 

 

 

Figure 10-24: a) Generation of the Haigh diagram from endurance strength  
σe,R=0 and σe,R=-1 as well as from yield stress σy=Re and ultimate stress  

σu=Rm b) Extension of the Haigh diagram by slope M’ = M/3. 

 

Figure 10-25: Determination of the slope factor M (Issler et al., 1995). 

The Haigh’s stress-life analysis is based on the S-N (Woehler) curves, which are delivered by experimental 
testing of standard specimen. All measured endurance stress σe are given for smooth probes (Figure 10-25). 
The endurance strength σe° for an arbitrary probe is recalculated from 

(42) e
f

edcba
e k

kkkkk σσ =°  , 

Haigh 
equation 

a) b) 
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where ka is surface finish factor, kb denotes size factor, kc means load factor, kd and ke are factors considering 
temperature effect and diverse effects, respectively. For empirical constants a and b (see Table 10-2) the 
surface factor ka is given as 

(43) ( )bma Rak =    at  Ne = 106. 

Table 10-2: Example of empirical constants a and b for surface  
finish factor ka in equation (43) from Issler et al. (1995). 

Empirical constant  
a 

Empirical constant 
b

Surface finish 

1.58 -0.085 Polished 
4.51 -0.265 Machined  
4.51 -0.265 Cold stretched 

57.70 -0.718 Warm laminated 
272.00 -0.995 Forged 

In the literature, different empirical relations can be found for size factor kb in equation (42). According to 
Shigley and Mischke (1986), one of them is cited here for circular cross sections with the diameter d between 
2.79 mm and 51 mm as  

(44) 
1133.0

b mm62.7
dk

−
⎟
⎠
⎞

⎜
⎝
⎛=   at  Ne = 106. 

For larger diameters, kb varies between 0.6 and 0.75. In case of axial loading, kb is equal to 1. For probes with 
a rectangular cross section of dimensions h×b, an effective diameter de is calculated by using the  
following expression  

(45) bh808.0de =   at  Ne = 106. 

Once the equivalent diameter de is calculated, it is substituted as d into equation (44) to determine the size 
factor kb of the probe with the rectangular cross section. 

The load factor kc in equation (42) is very important for the material strength under shear loading as it is 
shown in Table 10-3. Therefore, frequently this factor is called shear factor.  

Table 10-3: For Ne = 106, load factor kc which is called often shear factor (Issler et al, 1995). 

0.923 for axial load acting on alloys with σu ≤ 1520 MPa 

1 for axial load acting on alloys with σu > 1520 MPa 

1 for flexion (bending) load 

0.577 for torsion and shear load 
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Figure 10-26: Influence of surface ka and site kb factors on the behavior of Woehler curves for  
bending tests (a) and the Haigh’s diagram (b), where σe and σe° are endurance  

strength of the standard and analysed probe, respectively. 

Because the yield strength decreases with temperature, the correction has to be introduce by applying the 
temperature factor kd, which is determined from  

(46) 
C20,m

T,m
dk

°
=

σ
σ

  at  Ne = 106, 

where σm,T and σm,20°C are the mean stresses at elevated and ambient temperature T, respectively. Figure 10-27 
shows the typical dependency of the ultimate stress Rm and yield stress Re from temperature T. 

 

 

 

 

 

 

 

Figure 10-27: a) Dependency of the ultimate stress Rm and yield stress Re from temperature T,  
b) Variation of temperature factor kd in terms of temperature. 
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For diverse effects, the factor ke can account for instance following environmental conditions: 

• Corrosion can reduce the endurance strength to 0 (ke=0), 

• An electrolytic metallic recoverment can reduce the endurance strength to 0.5 (ke=0.5), 

• Metallisation by aspersion can reduce the endurance strength to 0.86 (ke=0.86), 

• Fretting can reduce the endurance strength between 24% and 90% (ke=0.24 – 0.90). 

Most vibration fatigue failures begin at locations of geometrical notches (e.g. radii, fillets, keyways etc.), 
which induce stress concentrations. Then, the fatigue stress concentration factor kf (called also a fatigue notch 
factor) in equation (42) is an essential feature of the reliable HCF life prediction. According to Peterson 
(1974), this factor corresponds proportionally to the geometrical stress concentration factor kt and is  
expressed by  

(47) ( )1kq1k tf −+=   at  Ne = 106, 

where q is a notch sensitivity factor, which by definition differs from 0 up to 1 and determines the sensitivity 
of discontinuity in the geometry. In general, the notch sensitivity factor q depends on 

• the material property, 

• the heat treatment of the material and 

• the notch size. 

The notch sensitivity factor q can be obtained from empirical Peterson’s equation  

(48) 
a1k

1k
q

n

n

t

f
+

=
−

−
=

ρ
ρ

 , 

where ρn radius (mm) at root of notch and a is material (Neuber’s) constant, given in (mm) unit, which for 
steels can be calculated from 

(49) 
( ) 8.1

mR
300001.0a =   for the ultimate stress Rm defined in ksi unit.  

In equation (47), the geometrical stress concentration factor kt is measured with monotonic loading test for the 
notched specimen. Usually this factor kt ranges from 1.2 to 4 but it can be even higher. Peterson (1974) 
provides many analytically computed geometrical stress concentration factor kt. Also, from the static finite 
element analysis with a very fine mesh or sub-modeling around the notch, the geometrical stress concentration 
factor kt. might be computed in reliable manner. Although the FE computation is based on the isotropic and 
homogeneous assumption, the real material behavior with internal minor flaws tends to reduce the stress 
enlargement. Indeed, these effects are included in the fatigue stress concentration factor kf. Therefore, the most 
reliable assessment of this factor kf is the experimental manner. Then the fatigue notch factor kf is defined as 
the relation of the endurance stress σe° of the notched specimen to the endurance stress σe of the smooth 
specimen. This experimental manner is expressed with  



High Cyclic Fatigue 

RTO-EN-AVT-207 10 - 33 

 

 

(50) 
°

=
e

e
fk

σ
σ

 . 

It has to be noticed that for complex shapes components, the stress concentration (fatigue notch) factor kf. 
cannot be determined in reliable manner.  

The determination of all strength derating factors in equation (42) is confusing engineering duty. One of 
frequently misunderstanding is application of the determined factors with equations (43) – (50) within the 
whole range of finite life between N=103 and Ne=106 (see Figure 10-22). Indeed all these equations are 
applicable for number Ne of 106 of fully-reversing cycles. As it is illustrated in Figure 10-26a, the derating 
factors influence significantly the HCF regime for high numbers N. According to Juvinall’s investigations 
(1967), a life in cyclic range number of 103 is much less influenced by these factors. He proposed empirically 
modified S-N curve as it is presented in Figure 10-28.  
 

 

Figure 10-28: Juvinall’s modification of S-N curve regarding the  
strength derating factors ka, kb and kf given in equation (42). 

To create the Juvinall’s S-N curves, the experimental endurance stresses for the smooth and notched specimen 
are demanded at N=103 of fully-reversing cycles. For the known experimental data, slopes of life curves 
within the finite life range can be determined as it is shown in Table 10-4.  



High Cyclic Fatigue 

10 - 34 RTO-EN-AVT-207 

 

 

Table 10-4: Determination of the strength derating factors within a finite  
life range between N=103 and Ne=106 (Corbo and Cook, 2000). 
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Finally, the estimated endurance strength σe° for the real probe, given in equation (42), is divided additionally 
by safety factor SF as it is shown below 

(51) 
F

e
SF,e S

°
=

σσ  , 

where the safety factor SF can equals 2 or even can be higher. Indeed, the safety factor includes all 
uncertainties, which appear in assessment of realistic damping magnitudes, excitation amplitudes or an 
influence of the mistuning on maximum vibration levels of the real system.  

Less conservative it is to derive the safety margin SF statistically, if the standard deviations of  

• the endurance stress sσ (see for instance Gauss distribution in Figure 10-22a), 

• the loading sω, and  
• the mean value fluctuation of size (or another design parameter) sM  

are known. Then, the safety factor SF is calculated from  

(52) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ ++−= 2

M
22

fF sssPexp10S σωΛ  , 

where Λ is a relative safety margin, which depends on the probability of failure Pf. Since the statistical data 
are not enough large, then the conservative assessment of a safety factor of 2 (or even more) needs to be used 
for the creation design curve according to equation (50).  

In the stress-life theory, a life of the part depends directly on the range of the mean and alternating stresses, 
which does not consider plastic behavior. In general, S-N method is empirical approach, which is based on 
many curve fittings. This method works properly for 
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• engineering type notch (e.g. groves, geometry change, etc.), 
• wrought steels (e.g. after Boushinger’s effect), 
• constant amplitude loading and  
• structures for them infinite life considered.  

The S-N methods does not work accurately for 
• aluminum alloys, 
• loading modes with variable amplitudes,  
• low cyclic fatigue with plastic deformation, 
• mechanical systems with sever geometrical notches and  
• periodically overloaded systems. 

The stress-life (S-N) approach is entirely acceptable engineering procedure for the prediction of the fatigue 
life, when mainly the infinite life is taken into consideration. On the other hand the S-N method tends to 
provide the conservative determination because of neglecting the ductility participation in the damage 
mechanism as well as of considering the endurance life up to 106 cycles.  

6.0 STRAIN-LIFE (E-N) PREDICTION OF FATIGUE FAILURE 

The Strain-Life method was developed by Coffin & Manson in 1950 for low cyclic fatigue problems of gas 
turbine and nuclear reactor components. In the 60’s, this method was improved by Morrow and Neuber as 
well as by other researchers considering different fatigue situations. In general the Strain-Life 

• deals with plastic strains, 

• considers notch geometries and multi-axial loading modes, 

• accounts residual stresses, 

• takes into consideration loading modes with variable amplitudes  

• combines creep and relaxation for high temperature. 

The application of this E-N method is more complicated in relation to the Stress-Life (S-N) approach and 
wide range of material data must be available.  

For the HCF regime, local cyclic plastic deformations are present in damage mechanism, which essentially 
depends on cyclic stresses and tensile stress. Once the local plastic deformation is needed in the assessment of 
fatigue failures, the strength and ductility must be considered in the analysis of the damage mechanism. This 
assures the strain-life (E-N) method, which calculates the total strain εT as a sum of elastic εE and plastic εP 
strain. In the HCF regime, the total strain is dominated by the elastic strain in relation to the participation of 
the plastic strain. This relationship is demonstrated very well in the typical strain-life curve in Figure 10-29b. 
Figures 10-29a shows area inside the hysteresis loop (ε−σ material response to cyclic loading), which 
determines energy per unit volume dissipated during one cycle. This energy represents plastic work, which is 
responsible for dislocation inside material and finally to crack imitation. For higher number N of cycles, this 
dissipation area minimizes itself what corresponds to HCF damage mechanism (Figure 10-22b).  
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Figure 10-29: a) Hysteresis loop (ε−σ material response to cyclic loading), where Δεp and Δεe denote 
the plastic and elastic strain range, respectively; b) Typical strain-controlled S-N curve, where σf and 

εf are true stress and true strain at fracture during tensile test (see Figure 10-22b), respectively. 

The fundamental principle for the strain-life approach is the Coffin-Manson equation, which describes the 
total strain ε in terms of the number N of fully reversed loading cycles (zero mean stress, σm = 0) as 

(53) 
( ) ( ) ( )cf

bf N2N2
E2

N ε
σε

+=   only for stress ratio R = -1 (see Figure 10-29a), 

where E means the Young’s modulus, σf and εf are true stress and true strain at fracture during tensile test (see 
Figure 10-22b), respectively, whereby b and c are empirical elastic and plastic strain exponents defining a 
slope of elastic and plastic strain curves as it is illustrated in Figure 10-29b. The exponent b and c can be 
found in the literature or obtained from available databank of material fatigue properties. By considering the 
reduction in the area ΔA of the probe (Figure 10-30) using for instance Poisson’s ratio v, the true stress σf the 
true strain εf at fracture during tensile test can be determined  

(54) 
A1

Rm
f Δ

σ
−

=   and  ⎟
⎠
⎞

⎜
⎝
⎛

−
=

A1
1lnf Δ

ε . 

 

a) 

b) 
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Figure 10-30: Correlation between the tensile specimen test and the parameters of the true  
stress σf and strain εf used in Coffin-Manson equations (53) and (54), where E is  

Young’s modulus and Ff denotes the tensile force before failing of the probe. 

This area reduction ΔA (or radius reduction shown in Figure 10-30) measures directly the ductility in the 
loaded probe, what it is not included in the stress-life method, besides the Morrow’s equation (38). 
Considering the influence of the mean stress σm (see Figure 10-23b) on the elastic part of, Morrow (1965) 
modified the Coffin-Manson equation (53) into 

(55) 
( ) ( )

( ) ( )cf
bmf N2N2

E2
N ε

σσε
+

−
=  

to consider arbitrary loading modes for different stress ratios R. Instead of the mean stress σm, Smith, Watson, 
and Topper (1970) combined the cyclic strain range Δε and maximum stress σmax (see explanations in Figure 
10-31) together in parameter Γ as  

(56) ( ) EE amaxaam εσεσσΓ =+=  ,  for  σm > 0, 

(57) EaaεσΓ =     ,  for  σm ≤ 0, 

where εa = Δε/2 is maximum principal strain amplitude and σmax denotes maximum tensile stress on the 
maximum principal strain plane. In other words, the maximum stress σmax is the sum of the cyclic stress 
amplitude σa and mean stress σm. Multiplying equation (53) by σf E, it is obtained  

(58) 
( ) ( ) ( ) cb

ff
b22

ff N2EN2E
2
N ++= εσσεσ    for various stress ratio R, 

and Smith-Watson-Toper (SWT) damage parameter is obtained in terms of the number N of cyclic to  
failure as 
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(59) ( ) ( ) ( ) cb
ff

b22
f N2EN2N ++= εσσΓ  . 

 

 

 

 

 

 

 

 

Figure 10-31: a) Graphical representation of the Morrow’s modification of the Coffin-Manson 
equation;  b) Graphical interpretation of the maximum stress for SWT model. 

In general the SWT model is more sensitive to mean stress than the Morrow model.  

Equation (59) is used as the damage parameter in the design process and is considered as the fatigue life curve 
for the local stress concept (Figure 10-32a). For the local strain concept the strain-controlled S-N curve, in 
which the computed amplitude εa of the alternating strain (see y-axis in Figure 10-29b) is related to the 
number Ni of cycles to failure. The failure is understand generally as an initiate of crack in the material under 
imposed alternating load. In practise, the real initiate of a crack is difficult to identify in the experiment. 
Therefore, in practise the number Ni of loading cycles to the failure is considered as a presence of crack depth 
a below 0.5 mm. However, this allowable value of the crack depth can be defined by every company 
individually according to its own experience of the particular component from the service.  

a) b) 
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Figure 10-32: a) Illustration of Smith-Watson-Toper (SWT) damage parameter Γ(N) as the fatigue life 
curve b) Osgood-Ramberg’s definition of the monotonic and cyclic strain-stress curves, where 

K=σf/(εf)n denotes strength coefficient and n is strain hardening exponent for the  
monotonic loading whereby K’=σ’f/(ε’f)n’ and n’ are for the cyclic loading. 

The local stress concept is applied usually in the engineering practise, because of the traditional standpoint in 
understanding of the fatigue material property. By analysing of the calculated results, most engineers think in 
sense of yield stress, the ultimate stress and endurance stress instead of that defined in strains. In addition, the 
experimental tests are easier and faster for measuring of the S-N curves under the controlled stress than the 
same tests by for the controlled strains.  

In the local stress concept, the computed 6 stress components at an arbitrary point in the critical region have to 
be recalculated into the equivalent stress by using the Mohr’s (1874) circle to get 3 principle stresses σmax, σmin 
and σmin in the three-dimensional stress state. The equivalent stress σeq can be calculated with  

• the maximum normal stress (MNS defined Rankine in 1861),  

• the maximum shear stress (MSS created by Tresca in 1868) or  

• the maximum strain energy (formulated by Huber in 1904 and independently by von Mises in  
1913) hypothesis. 

The criteria of the MNS and MSS hypotheses are based on the principle stresses which are easy to determine 
for the 2D stress state. For the general three-dimensional stress state with 6 components of σxx, σyy, σzz, σxy, σxz 
and σyz, the equivalent stress σeq cannot be found in the closed-form. In addition, the MNS and MSS 
hypotheses do not always predict properly failures of some real cases for the particular static stress conditions. 
Once the equivalent strain σeq,a is computed, the equivalent strain εeq,a can be determined by using the 
empirical Osgoog-Ramberg’s equation for the cyclic strain-stress curve, which is demonstrated in Figure 10-
32b. Then, the local strain concept can be used in the design process, if the strength coefficient K’ and strain 
hardening exponent n’ for cyclic loading are known form the experiment.  
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7.0 FATIGUE ASSESSMENT 

The S-N or E-N method predicts the number of cycles to crack initiation for the constant load history. For real 
operation conditions of the machine, the loading acting on the analyzed component can vary in the time 
domain as it is shown in Figure 10-33a. For these signals, the Palmgren (1924) - Miner (1945) linear damage 
hypothesis is applied, which accounts i different stress amplitudes. These amplitudes are ordered in blocks of 
stress/strain cycles. Each of them has the constant amplitude as it is demonstrated in Figure 10-33b for 5 
blocks.  
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Figure 10-33: a) Realistic load history of the component b) Palmgren-Miner counting  

of the 5 blocks of the different constant load amplitudes for the life estimation. 

In Figure 10-34, the behaviour of the loading history of 2 signals is shown with respect to the relation among 
their frequencies and phase delays. The PM hypothesis can be used for to the signals whose frequencies are 
identical and their phase delays differ to each other (Figure 10-34a and 10-34b). However, for the signals with 
slightly different frequencies corresponding to the beating vibration (Figure 10-34c) the PM hypothesis does 
not provide the right counting of cycles. In case of a significant frequency difference, like it is illustrated in 
Figure 10-34d, Palmgren-Miner’s hypothesis is not allowed because this counting approach works properly 
only for a sequence of the repeatable amplitude in the loading history.  

i=1 

i=3 
i=2 

i=5 i=4

a) 

b) 
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a) F2≠F1, ω2=ω1, γ2=γ1    b) F2≠F1, ω2=ω1, γ2=60°+γ1   

-10

-5

0

5

10

15

20

25

30

   -10

-5

0

5

10

15

20

25

30

 
 
c) F2≠F1, ω2≠ω1 (ω2=0.8ω1), γ2=60°+γ1  d) F1≠F2, ω2≠ω1 (ω2=0.3ω1), γ2=60°+γ1 
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Figure 10-34: Behavior of the total loading history σ(t) of two signals σ(t)1 and σ(t)2 in terms of the 
relation among frequencies ωi and phase delays γi, (i=1,2) for the constant mean stress σm where  

σ(t) = σm + σo,1cos(2πω1t+γ1) + σo,2cos(2πω2t+γ2) for amplitudes of σo,1 and σo,2 in time t. 

For variable amplitudes, the Rain-flow Cycle Counting approach frequently is used, which is based on 
counting stress-strain cycles. For this kind of loadings, Miner’s method would underestimate the fatigue 
damage of the cases with variable loading amplitudes. The results of the rain-flow counting deliver ranges of 
alternating stresses σa,i, with the number of reversals for each range. The entire process of the rain-flow 
counting is straightforward for which a tested procedure can be easily found in the literature. The application 
of the rain-flow counting for the signal given in Figure 10-34d is explained in Figure 10-35.  
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a) The 1st rain-flow count of 5 cycles (reversals) 
 

 

 

 

 

 

 

 

 
b) The 2nd rain-flow count of 2 cycles (reversals) 

 

 

 

 

 

 

 

 

c) The total rain-flow count 

Amplitude range Δ 7.6 8.0 8.8 13.9 14.4 
Number of reversals 2 2 1 1 1 

Figure 10-35: Example of the rain-flow counting for the signal  
given in Figure 10-34d, where T denotes vibration period. 

The linear Palmgren-Miner (PM) cumulative damage hypothesis assumes that different blocks cause identical 
damage, independently of the time when they occur in the signal history. Thus, the PM hypothesis is based on 
the major assumption that the total damage D is a linear sum of partial damages Di, as it is expressed 
mathematically with  

5 counted reversals 
Peak A Peak B Peak A’ Amplitude 

range 
P2=22.4 P3=14.8 P’2=22.4 P2-P3=7.6 
P6=26.1 P5=18.1 P’6=26.1 P6-P5=8.0 
P8=26.1 P9=18.1 P’8=26.1 P8-P9=8.8 

P10=26.1 P11=18.1 P’10=26.1 P10-P11=8.0 
P14=22.7 P13=15.1 P’14=22.7 P14-P13=7.6 
 

2 counted reversals 
Peak A Peak B Peak A’ Amplitude 

range 
P7=13.4 P4=27.3 P’7=13.4 P4-P7=13.9 
P9=13.4 P12=27.3 P’9=13.4 P12-P9=14.4 
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where ni is the number of cycles for the same alternating amplitude σa,i. In equation (60), the number of 
allowed cycles Ni for alternating amplitude σa,i for the accounted mean stress σm,i (see Figure 10-33) is  
calculated from  
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where σe is the endurance stress for the cycle number Ne under acting the mean stress σm,i at the temperature 
Ti. The exponent k depends on the material properties, quality of the manufacture and other conditions. 

The number of the accounted cycles ni for the alternating stress σa,i is illustrated in Figure 10-36. According to 
the PM equation (60), the damage occurs if D ≥ 1. Indeed, the real damage can appear for the damage factor 
D, which might vary between 0.7 and 2. The acceptable magnitude of damage factor D depends on the type of 
specimen and its alloy which can be made of cast iron, steel, aluminum or titanium alloys (Schütz and Zenner, 
1973). Usually in the conventional design concept, D is assumed to be equal to 1. Also, the entire loading 
history influences remarkably the life as it is presented in Figure 10-37. For real service loading with variable 
alternating stress and mean stresses, the real life of the loaded component can be found between the Wöhler’s 
and Gassner’s curves (Figure 10-36). The Gassner’s curve is arranged experimentally for different Gaussian 
variable amplitudes of the alternating stress σa.  
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Figure 10-36: Stress-cycle curves for cumulative fatigue damage based on the Wöhler’s line  
for the mean stress for σm at temperature T, where the alternating stresses σa,i,  

(where i=1, 2, 3) are given for the same σm and T, where usually Ne = 1×106. 

 

Figure 10-37: Discrepancies between the Palmgren-Miner (PM) prediction and  
real damages in terms of the loading history (Miller and Zachariah, 1977). 

In reality, an endurance limit σe does not exist, and it always decreases slowly in time with various rates for 
different materials. Thus, the alternating stresses below the endurance (fatigue) strength σe contributes to the 
fatigue damage D and the PM hypothesis was extended by Haibach (1989) with  
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The Haibach and PM linear hypotheses were extended into the non-linear form by Corten and Dolan (1956), 
which is expressed by  

(63) 
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where the stress-cycle curves depend on the empirical factor δ(σi), which is determined experimentally for 
different sequences of the alternating stresses σa,i. In engineering practise, this coefficient needs to be 
simplified due to the lack of measurements based on the machine monitoring. Other non-linear hypotheses, 
such as: Macro and Starkey (1954), Shanley (1952) (which are similar to Corten and Dolan hypothesis) or 
Henry (1955) hypothesis are not discussed in this work.  

All existing stress-cycle hypotheses are worked out on the step-wise concept for accumulation of damages. 
Indeed, instead of the discrete form expressed by sums of damages Di, the continuous cumulative model 
should be applied and the total damage would then be calculated from  

(64) 1
N
dnD == ∫  . 

According to equation (64), probabilistic methods have to be exploited, which is the actual trend in the 
literature. The relation among all these method is briefly summarized in Figure 10-38. Now in the industry, 
engineers use mainly the linear PM hypothesis with the rain-flow algorithm for cyclic counting. However, this 
approach frequently overestimates the real damages in the system or undervalues the real remaining life in the 
mechanical system.  

 

Figure 10-38: Development of hypotheses for the assessment  
of the cumulative damage in the loaded part. 
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8.0 STOCHASTIC VIBRATIONS 

Regarding that the endurance limit does not exist in reality, even blades operating free-of-resonance stochastic 
vibration (see Figure 10-1c) can lead into fatigue failure. Therefore, the fatigue assessment should consider 
also for stochastic vibrations, which always occur in the real machine operation. Besides the white noise 
vibration, whose response amplitudes are usually negligible small1, the stochastic vibrations are divided into 

• a narrow band process and 

• a broad band process. 

The narrow band vibration is built up by sinusoidal excitations, which cover only a narrow range of particular 
eigenfrequencies of the mechanical component. In the narrow band vibration, a characteristic amplitude 
modulation can be identified like it is in the “beat” vibration (see for instance Figure 10-34c). A freestanding 
turbine blade generally experiences the narrow band vibration what can be assessed from the measured 
frequency spectrum. As a rule of thumb, the frequency range of the response resonance spectrum is 10% 
smaller than a magnitude of the resonance frequency. Otherwise the stochastic vibration response might be 
treated as the broad band vibration, which is caused by many sinusoidal excitations over a broad range of the 
frequency domain of the analyzed component. This type of the stochastic vibration is quite difficult to identify 
in relation to the narrow band process. However, a time signal of the broad band vibration has characteristic 
positive and negative valleys (troughs) in its signals which are over or below the mean value level. For narrow 
band vibrations, there is always one zero crossing between a peak and a valleys. Peaks occur only above mean 
load and valleys below, respectively. 

The fatigue vibration analysis of the narrow band vibration can relatively be easily performed. The Probability 
Density Function (pdf) of the Rain-Flow Ranges needs to be known as well as the number of the peaks E[P] 
and upward mean crossings E[0] which has to be extracted in the component’s vibration per second. 
According to Rice (1954), these numbers can be also calculated from spectral moments mn which are obtained 
directly from the Power Spectral Density (PSD) obtained as the squared modulus of the Fast Fourier 
Transformation (FFT) of the measured time history. In this case, it is necessary to apply the Hanning window 
for avoiding leaking effects of the processed time signal in the chosen time domain. Then, for the narrow band 
signals, whose peaks are described by a Rayleigh distribution R(σa) as it is given below,  
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In equation (65), the number ni of cycles of stress amplitude σa in time T, given in seconds, is computed 
(Bishop and Sherratt, 1989) from  
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where m0, m2 and m4 are spectral moments obtained from  

                                                      
1  The stress range is below 0.5 MPa.  
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In equation (67), parameter J indicates the number of points tabularizing the Power Spectral Density G(f), 
where G(f)j and fj are values of the PSD function and frequency at point j whereby dfj = Δf/J is frequency 
width at point j for the considered frequency domain Δf. The determined cycle number ni is then used in 
Palmgren-Miner counting of the total life. If ni is equal to 1, then a crack is initiated in the structure.  

Since the transfer function H(f) of the analyzed component is known from the Finite Element computation, the 
PSD response r(f) is determined at the arbitrary point of the structure from 

(68) r(f) = G(f) H(f) , 

where G(f) is the Power Spectral Density at the monitoring point.  

This procedure of the narrow band vibration gives a too conservative life estimation of the broad band signals. 
Therefore, the Rayleigh distribution R(σa) of peaks in the time signal in equation (65) is replaced by the 
empirical Dirlik’s function D2, which depends on the considered stress amplitude σa and m0, m1, m2, m4 
spectral moments. Then, the number of cycles of stress amplitude σa in time T of the broad band signals is 
calculated from  

(69) [ ] ( )4210aai m,m,m,m,DTPE)(n σσ =  , 

where also the number of the peaks E[P] is determined for the known spectral moments m1 and m4 as 

(70) [ ]
2

4
m
mPE = . 

From equation (66) or (69), the determined cycle numbers ni for all stress amplitudes σa,i that can be identified 
by the monitoring system are used in the prediction of the accumulated life of the analyzed component.  

9.0 FINAL CONCLUSIONS 

The whole HCF design process requires a lot of the numerical, experimental and laboratory engineering 
efforts. Therefore, the confident turbine design, which has accumulated many hours of reliable operation, is 
frequently scaled to sizes of the turbine unit demanded by market. The comparable scaling design 
philosophies have been developed independently by different companies like for GE gas turbines (Brandt and 
Wesorick, 1994) or for ALSTOM GT26 gas turbine (Eckardt and Rufli, 2002), scaled up from the GT24 unit 
designed for 60 Hz market, so that their compressors are principally identical on a 1.2 scale basis. The 
evaluation of the Siemens W501ATS from the W501 gas turbine (Diakunchak at al., 2002) is based on the 
scaling concept. Also Mitsubishi Heavy Industries shows good experiences with the upgraded M701G2 
compressor, which is a scale-design of M501H unit (Maekawa et al., 2003). These modular concepts provide 
significant flexibility in the design process and fulfill customer’s demands for fast delivery periods and 
moderate prices with the proved performance and reliability. 
                                                      

2  All details of Dirlik’s function are given in the open literature.  
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But too rapid scale-up/down of turbine components without sufficient numerical or experimental verification 
can lead to equipment failures and unexpected maintenance costs (see e.g. Swanekamp, 2000 or Wan, et al., 
2002). Reimann (2000) presents a list of items and technical challenges, which have to be proved by scaling 
steam turbines. For the scaled-up low pressure last turbine stages, the bending pressure and excitation forces 
can be responsible for severe loading of the rotating airfoil, which should be validated in the design process. 

The entire engineering concept for the HCF analysis is very well understood but it requires several physical 
parameters for its realistic application, especially the loading history. Nowadays, the reliable prediction of the 
resonance blade conditions can be attained with the 3D FE free vibration simulation considering sliding 
contact conditions. The realistic damping prediction becomes still an experimental and engineering challenge 
for assessing realistic resonance responses. On the other hand the newest applications of the technology based 
on friction dissipation seem to be well developed so that the blade vibrations can be controlled very well, but 
not all resonances. Numerical procedures of the fluid-structure interaction are being still developed, and they 
still do not assure effective predictions of the 3D excitation forces acting on the rotating blades with respect to 
different operation states of the engine.  

Considering additional uncertainties with blade mistuning and unknown excitation level, monitoring systems 
are being intensively developed for better controlling of real blade dynamic behaviour as well as for recording 
the real loading history. This develops the diagnostic methods which are able to predict the remaining life of 
the parts in the service. By using the measured loading history, the blade HCF fatigue can be determined very 
realistically based on these information presented in this report. Naturally the monitoring systems increase 
costs of the engine operation, but they are generally lower than unexpected crash of the whole machine. 
Anyway, to avoid too much disaster, casings of the engine are frequently designed for containing all pieces of 
the broken rotating components. 
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Appendix 1: Influence of the Shroud Contacts on Natural  
Frequencies of the Bladed Disc Assemblies 

For the standstill condition, the FE eigenfrequencies of the disc with 50 rectangular welded bars (30×6 mm) 
with shroud coupling are shown in Figure 10A1-1. The bar, as a simple blade model, with a height of 135 mm 
is staggered by 27° in relation to the disc axial direction. A separate shroud is mounted to the bar tip through  
2 tight pins (a diameter of 7.7 mm) and a radial single M4 screw. By pre-twisting of 1° of each blade, the disc 
is assembled. The coupled blade is approximated with parabolic solid finite elements. The shroud contact is 
represented with 4×10 2D contact elements. Imposing a pre-twisting assembly deformation of 1° on the blade 
and assuming a friction coefficient of 0.2, the contact areas between the shrouds are computed from the non-
linear static analysis. Finally, the blade eigenfrequencies are calculated with a very good agreement to the 
measured resonance frequencies. In the disc assembly, strong mistuning effects among blades are expected 
considering the manner of shroud assembly at the blade tip. In the measurement, for the same nodal diameter 
number, 2 different eigenfrequencies were occasionally measured due to mistuning effects (for instance, see 
the 2nd mode with 13th nodal diameter in Fig. 10A1-1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10A1-1: The nodal diameter diagram at standstill with the measured (red points) and 
computed eigenfrequencies of the shrouded blades like beams with the pre-assembled shroud 

coupling, where “old concept” and “new method” relate to the cyclic FE analysis with fully  
sticking and sliding contact condition, respectively in the static simulation. 
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The shroud (as well as the snubber) coupling of the turbine blade can be arranged at standstill for pre-
assembly contact conditions or with mechanical clearances. In both cases, the numerical eigenfrequencies of 
the disc assembly at the nominal speed are computed with very good agreements with the resonance 
frequencies measured at the nominal speed in the spin pit condition, as it is shown in Figure 10A1-2. 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 10A1-2: The nodal diameter diagrams at the nominal speed in the spin pit condition of:  
a) the gas turbine blade arranged with clearances between the shrouds at standstill; b) the  

steam turbine blade assembled with the pre-stressed on the shroud at standstill. 

a) 

b) 
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